top of page

Stem Cell Can Help

Spinal Cord Injury

CIRM funds many projects seeking to better understand spinal cord injury and to translate those discoveries into new therapies.

Description

About 250,000 people in the U.S. live with spinal cord injuries. Half of those are quadriplegic, with the paralysis impacting all four limbs to some extent. For those individuals the lifetime cost of managing their condition is estimated to be between $2 million and $3 million.

Spinal cord injury became the first condition targeted in a human clinical trial using cells made from embryonic stem cells. That trial, begun by Geron in 2010 and based on the findings of a team CIRM currently funds, was later cancelled by Geron for financial reasons. By the time of the cancellation five patients around the country had been enrolled in the study, including two at Stanford, who entered the trial during a period when CIRM funded Geron. Those patients continue to be followed to learn as much as possible about this approach.

California’s stem cell agency retains many grants for research to move potential spinal cord injury therapies forward (the full list is below). Much of this work focuses on trying to determine which type of nerve cell is the best one to transplant, and deciding which type of stem cell is the best starting point for making those cells. Other research is trying to see if these transplanted cells become part of the existing nerve system, helping create new pathways that can transmit nerve signals to muscles. The researchers are also looking at ways to try and improve the ability of these transplanted cells to become part of the nerve system.

One obstacle that some teams are trying to overcome is the tendency of the scar at the site of injury to block the growth of these transplanted cells. One group is trying to overcome that by combining stem cells with synthetic scaffolds that can be placed at the site of injury, to help the cells bridge the scar and restore signals. In animal models this combination has resulted in an increase in mobility compared to stem cell grafts alone.

Clinical Stage Programs

Asterias Biotherapeutics (now called Lineage Cell Therapeutics Inc.)

The company uses cells derived from embryonic stem cells to heal the spinal cord at the site of injury. They mature the stem cells into cells called oligodendrocyte precursor cells that are injected at the site of injury where it is hoped they can repair the insulating layer, called myelin, that normally protects the nerves in the spinal cord. 

bottom of page